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ABSTRACT

In order to interpret recent results of shape optimization
for the aeolian tone problem in 2D, laminar flows, the
Reynolds number corresponding to the onset of unsteadi-
ness in a flow over a bluff body is estimated for a set
of shapes : five canonical shapes (the ellipse, the rect-
angle, the losenge and two triangles) are studied, as well
as the influence of their aspect ratio that is varied from
0.2 to 2. The critical Reynolds number (Rec) is obtained
by binary search within direct numerical solutions of the
Navier-Stokes equations, using Incompact3D solver with
an immersed boundary method. A criterion is designed on
purpose to discriminate between steady and unsteady solu-
tions. This methodology yields critical Reynolds number
values in good agreement with literature results. For all
the shapes, Rec increases exponentially with the aspect ra-
tio. When the latter tends to zero, the evolution for all the
shapes merge around Rec ≈ 31, which is that of a flat plate
normal to the flow. The ranking of shapes using their Rec
provides insight of the different levels of unsteadiness, and
thus of radiated noise, that are noticed between bluff-body
flows when analysed at a fixed Reynolds number.

1. INTRODUCTION

Despite numerous efforts in the past, notably from Roskho
[1, 2], an universal description of bluff body flow dynam-
ics remains rather empirical and closed models are highly
restricted. One fundamental aspect of these dynamics
is the transition to unsteadiness. At very slow velocity
(10 . Re . 50 for the circular cylinder [3], with the
Reynolds number defined as Re = U∞ d/ν, where U∞
is the free-stream velocity, d is the diameter and ν is the
kinetic viscosity), the flow is time independent and de-
fined by a steady re-circulation bubble on the downstream
portion of the body. For faster flows, a periodical vortex
shedding takes place in what is defined as the Von-Karman
instability; the value of the Reynolds number where that
transition takes place is referred to as the critical Reynolds
number, Rec.

Several works may be cited in what concerns the tran-
sition for the circular section, for instance, [4–6], how-
ever, an expanded description of multiple sections is un-
known by the authors. Sole examples that could be found

in the literature are the studies by Jackson [7] (elliptical
sections, a flat plate and isosceles triangle in multiple ori-
entations), Paul et al. [8] and Thompson et al. [9] (both
studies dedicated to elliptical sections of different aspect
ratios). We think that including different geometries in the
same study is an important path for a better understanding
of the flow dynamics. In this work, more than 70 geome-
tries are studied, considering a combination of 5 geomet-
rical paradigms (ellipses, rectangles, and lozenges along
with front- and back-pointing triangles) and multiple as-
pect ratios (ratio between the sectional breadth and height,
aspect ratio AR = L/d).

Moreover, studying different aspect ratios is in accor-
dance with the interest given to such kind of geometry
modification, notable in aeroacoustics. Modifications of
the aspect ratio of rectangular cylinders have been dis-
cussed numerically [10–12] and experimentally [13–15].
As stated by Islam et al. [16], the streamwise length is an
important feature in the definition of the vortex shedding
dynamics.

Nevertheless, it has been reported that the amplitude of
the flow quantities in terms of wake velocities and integral
aerodynamic efforts correlates with the ‘distance’ of the
flow to that transition [4, 17, 18]. This could partly explain
the wide range of acoustic efficiency (up to 20 acoustic
power dB) noticed in the shape optimizations performed
in [19, 20] whereas the blocking height was kept constant.

This paper is organized as follows: the aerodynamic
solver and the technique for obtaining the critical Reynolds
number are presented and validated in Section 2; next, re-
sults for the influence of aspect ratio are presented in Sec-
tion 3 with a regression model and an estimation of the flat
plate critical Reynolds number. Conclusions close the ar-
ticle in Section 4, while some material and discussions are
pushed to the Appendix in order to lighten the main text.

2. METHODOLOGY

The critical Reynolds number is binary searched among di-
rect solutions of the unsteady Navier Stokes equations for
an interval of Reynolds numbers, using a bisection method
driven by a criterion of unsteadiness; the Immersed Bound-
ary Method (IBM) is exploited to simulate many geome-
tries on the same grid. Their implementation is detailed
next.
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2.1 Solver

The flow is described numerically using an incompress-
ible direct Navier Stokes two-dimensional (2D) solver [21]
(DNS). It is a finite difference code with spatial derivatives
defined by a 6th order centered scheme and time advanc-
ing performed using a 3rd order Runge-Kutta scheme. The
pressure field is defined in a sub-step such as to guarantee
the incompressibility; the corresponding Poisson equation
is solved in the spectral domain.

The mesh is Cartesian, uniform in x and stretched
in y direction (points concentrated at the center). The
cross-sections are modeled using an Immersed Boundary
Method (IBM) [22] to describe the solid domain, generat-
ing the following momentum equation for unitary mass:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂

∂xj
[pδij − τij ] + fi (1)

where p is the pressure and ui, δij , τij and fi are the com-
ponents of the velocity vector u, the Kronecker delta, the
viscous stress tensor τ and the IBM forcing term f , defined
as a damped oscillator [23]:

f(x, t) = −w(x)

[
ω2
n

∫ t

0

u(x, t)dt+ 2ζωnu(x, t)

]
(2)

The damped system coefficients are selected as ωn = 50
and ζ = 1, as proposed by Margnat & Morinière [23]. The
w matrix drives the spatial weighting of the forcing term:
w = 1 is set at a grid point located inside the body con-
tour, while w = 0 outside (fluid domain). In this appli-
cation, there are no ghost-cells nor surface-based correc-
tion/interpolations, so the shape of the obstacle is limited
to the grid resolution. The validation of the present combi-
nation of flow solver with IBM technique was conducted
specifically for unsteady flows over sharp edged bodies
in [23]. Extensive comparisons with literature data were
conducted in [11, 19] for aerodynamic integral quantities,
that is influence of shape and Reynolds number on Strouhal
number, mean drag and lift amplitude.

The numerical setup, as well as the boundary conditions
are represented in Figure 1. Current mesh is of nx × ny =
649× 257 points, for a domain of 25.3d× 20d. At inflow,
the velocity is set as [u = U∞ , v = 0]. At outflow, an
open boundary condition is deduced from an explicit, first
order approximation of the convection equation:

∂u

∂t

)
outflow

+ U∞
∂u

∂x

)
outflow

= 0 (3)

The implementation of the boundary conditions in the
solver is described in details in [21].

Base timestep duration is of T = 0.0072 d/U∞, but due
to stability issues of the forcing term, this value is reduced
for lower Reynolds number when divergence is encoun-
tered, what resulted in a range of 0.0036 to 0.0072 d/U∞.
Time, grid and domain convergence studies have been per-
formed and are presented on earlier works [19,20]. Current
parameters allow the complete simulation of a given flow
case to be performed within about 2 hours in a single core.
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Figure 1. Numerical setup. The aspect ratio is defined as
AR = L/d. Sketch not on scale.

2.2 Tested sections

Tested sections are canonical geometries at different as-
pect ratios. The geometries are rectangle (rect), ellipse
(elip), front-pointing isosceles triangle (trif), back-pointing
isosceles triangle (trib) and lozenge (losn), as illustrated in
Figure 2. All the shapes are symmetric with respect to flow
axis. As indicated in Figure 1, the breadth of the shape is
noted L and defines the aspect ratio as AR = L/d. More-
over, the height d is the same for all shapes and is the ref-
erence length used to form the Reynolds number.

Values of aspect ratio from 0.1 to 2.0 are considered,
with an increment of 0.1 for AR < 1.0 and 0.2 other-
wise. Intermediary values are also added, associated with
the transition of the wake pattern at Re = 150, as discussed
in another article [12].

Since an IBM is being used, the description of the ob-
stacle is limited to the precision of the mesh. With the cur-
rent discretization, each segment d is described by about
25 elements in x and 50 in y.

The numerical setup is quite similar to the work of Paul
et al. [8] who also studied the Rec using an IBM based
solver. The present contribution extends the discussion to
other geometries (more shapes and bigger aspect ratios)
and the formal statistical description of the relationship be-
tween Rec and the aspect ratio.

2.3 Estimation of the critical Reynolds number

2.3.1 General principle

Due to the facility of performing multiple simulations in
a short time, the chosen strategy for identifying the criti-
cal Reynolds number for each geometry is to run succes-
sive simulations, the Reynolds number being set by a di-
chotomy algorithm. Given that all the geometries yield a
steady flow at Re = 30, and an unsteady flow at Re = 90,
the case Re = 60 is run. If the converged flow is unsteady,

elip rect trif trib losn

Figure 2. Studied shapes, considering flow from left to
right and plotted for AR = 1.0.
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then the next run is at the median of the interval [30, 60],
that is Re = 45. Otherwise, if the flow is steady, the case
Re = 75 is run, and depending on unsteadiness, either the
median of the Re interval [60, 75] or [75, 90] will be set
for the following step. Thus iterating, a Reynolds num-
ber interval, whose lower and upper bounds yield steady
and unsteady flow, respectively, is refined until a precision
of .5. By design, the onset of unsteadiness is assumed to
occurs inside this limit interval.

In order to unman the process, whether the simulated
flow is steady or unsteady must be defined with a univo-
cal criterion. As described in the following sections, this
requires the selection of a flow quantity, a location where
this quantity is monitored, and a threshold.

2.3.2 Settings

After several tests, the fluctuating y-velocity is chosen as
the variable of interest for its unanimity in describing the
transition in terms of magnitude (fluctuations are bigger
than the other flow quantities) and location.

The location of monitoring is set as (x = 12d, y = 0).
Indeed, as visible in Figure 3, the unsteady flow sustains
non-zero y-velocity in the far wake, whereas the fluid re-
turning the axis after turning around the body yield non-
zero y-velocity for 2 . x/d . 4 in the steady regime.
Such qualitative difference between the two regimes en-
ables better automatic detection of unsteadiness when
monitoring the relative far wake. Placing the probe far
from the body also reduces bias due to the shape.

Moreover, on the streamwise axis, the y-velocity is zero
by symmetry in both the the steady (before transition) and
the mean (after transition) flow, after the transient. This
offers better conditions for detecting unsteadiness from a
slowly converging steady or mean flow.

For the quantification of unsteadiness, the maximal fluc-
tuation with respect to a moving average is considered.
The threshold for defining the unsteadiness is here set to
∆v > 10−4U∞ at the end of the simulation (e.g. 25000
timesteps, physical time of 180d/U∞). This may be com-
pared to the amplitude of physical fluctuations just after
the transition, which scales with the following parame-
ter [17, 18, 24]:

ε =
Re− Rec

Rec
(4)

The dichotomy final interval being of half a Reynolds num-
ber unit, Rec = 50 leads to ε = 0.01. On the other hand,
numerical errors are typically about 10−6. The present
threshold is thus very large with respect to residuals and
very small with respect to physical fluctuations, so it is rel-
evant to discriminate between both. More details on the
selection of this threshold are given in [25].

2.4 Comparison to literature data

The values obtained with the present methodology are now
compared to reported Rec for three canonical shapes at
AR = 1.0. For the circular section (Table 1), the di-
chotomy leads to Rec = 47.3 ± 0.25 while the literature
interval is [45-48.3]. Most recent studies report Rec ≈ 47.

v=U1

-0.5 -0.25 0 0.25 0.5

Figure 3. Instantaneous y-velocity fields for a steady (up-
per, Re = 40) and unsteady (lower, Re = 60) flow, circu-
lar cylinder (elip, AR = 1.0).

Table 1. Literature values of Rec (transition from steady to
unsteady flow) for the circular cylinder (elip, AR = 1.0).

reference Rec
Zebib (1987) [26] 45
Jackson (1987) [7] 46.136
Provansal et al. (1987) [4] 47
Strykowski & Sreenivasan (1990) [5] 46
Kumar & Mittal (2006) [27] 47.045-47.3181
Paul et al. (2014) [8] 48.325
Thompson et al. (2014) [9] 47.2
Chopra & Mittal (2019) [28] 46.985
present study 47.3± 0.25

For the square section (Table 2), reported data interval is
[45-51.2] while the present value is 45± 0.25. Finally, for
the front pointing triangle (Table 3), the data are huddled
between 39.6 and 40.5 including the present value. The
present methodology output is thus in very good agree-
ment with references for three different geometries. This
validates the detection of unsteadiness onset by the binary
search with the selected monitoring and threshold, com-
bined with the IBM technique in the direct solver, for the
study of the influence of shape on this transition. Further
validation is provided in Section 3.1 where the influence
of aspect ratio is described, using grid refinement for short
bodies and additional literature data.
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Table 2. Literature values of Rec (transition from steady
to unsteady flow) for the square cylinder (rect, AR = 1.0).

reference Rec
Sohankar et al. (1997) [29] 47± 2
Sohankar et al. (1998) [30] 51.2
Saha et al. (2000) [31] > 45
Yoon et al. (2010) [32] 45
Bai & Alam (2018) [33] ∼ 50
Jiang & Cheng (2018) [34] ∼ 46
present study 45.0± 0.25

Table 3. Literature values of Rec (transition from steady
to unsteady flow) for the front-pointing triangular cylinder
(trif, AR = 1.0).

reference Rec
Zielinska & Wesfreid (1995) [35] 39.6
De & Dalal (2006) [36] 39.9
Prhashanna et al. (2011) [37] 40± 0.5
Ng et al. (2016) [38] 40.45
present study 39.8± 0.25

3. RELATIONSHIP BETWEEN THE CRITICAL
REYNOLDS NUMBER AND AR

The tested geometries here can be separated in two groups:
I) the ellipse, front-pointing triangle and rectangle (elip,
trif and rect), that follow an exponential law and converge
toward the same value for AR→ 0, as visible in Figure 4;
II) back-pointing triangle (trib) and lozenge (losn), shown
in Figure 5, that have a rather constant Rec until unitary
AR, and an almost identical tendency afterwards.

To model the increase of Rec with aspect ratio, several
laws were tried (see discussion in the A), and the following
exponential law has been selected:

Rec = a exp(bAR) (5)

The resulting laws are presented in Figure 4 and 5, and
the coefficients are listed in Tables 4 and 5 in Appendix A,
together with the determination coefficient R2 and the p-
value for a normality test [39] of the error. A high p-value
(& 0.05) means that the null hypothesis that the data came
from a normally distributed population can not be rejected.
For the elliptical section, for example, coefficients are a =
30.55 and b = 0.4549, with R2 = 0.99 and normality test
p-value = 0.68. Overall, from Figure 4 and 5 and Tables 4
and 5, the proposed model (5) is of very good statistical
quality.

3.1 Behavior for short bodies (low AR’s)

Unlike for AR ≥ 1.0 where the exponential trend appears
clearly on the data, the influence of the aspect ratio seems
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Figure 4. Binary search results (symbols) and regression
laws for the critical Reynolds number as a function of the
aspect ratio for group I (elip, rect and trif). Solid lines rep-
resent the 2 parameters regression while the hashed ones
correspond to the laws derived with an imposed Rec,AR→0.
For readability, the symbol shape is that of the body for
AR = 1, with flow from top to down.

less universal for short bodies. There are indeed two be-
haviors, as investigated in this section.

3.1.1 The thin plate as a limit for elip, rect and trif

The congruence of the points and the regression laws
at small AR allows the definition of a flat-plate critical
Reynolds number (Rec,AR→0). Considering that Equa-
tion (5) is exponential, the coefficient a corresponds to this
value (Rec = a when AR = 0). That leads to the follow-
ing reduced model:

Rec
Rec,AR→0

= exp(bAR) (6)

Considering the average of the 3 shapes on the first
group, the critical Reynolds number for a thin plate (AR→
0) is of 31.03. This value lies within the range of 30-35
proposed by Saha [40] and is very close to that obtained
by Thompson et al. [9] of 31.6. The values of the regres-
sion parameter b when a is thus fixed are given in Table 4,
and the reduced models are plotted in Figure 4. The single
parameter models (6) are found almost indistinguishable
from their two parameter counterpart (5). This establishes
the relevancy of the common value when AR → 0 for the
three tested geometries. It is thus evidenced that ellipses,
rectangles and front-pointing triangles have the same on-
set of unsteadiness as a plate normal to the flow when their
aspect ratio is close to zero.

3.1.2 Grid refinement

For the lozenge and the back-pointing triangle, the critical
Reynolds number seems almost constant for AR ≤ 1.0,
as visible in Figure 5. However, a dispersion of the data
is noticed, in particular for the triangular section. Given
the limitations of the present methodology regarding both
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Figure 5. Binary search and literature results (symbols) and regression laws for the critical Reynolds number as a function
of the aspect ratio, for lozenge (losn, left) and back-pointing triangle (trib, right). The value for the latter geometry at
AR = 0.5 is taken from Figure 15 of the study by Yoon et al. [32] on a square cylinder at incidence. Hashed lines represent
2 parameters regression fit calculated for AR ≥ 1.0.

the no-slip condition modeling with IBM and the detec-
tion of unsteadiness, grid refinement is conducted for the
shortest cases. The simulations and the binary search are
thus rerun with twice more grid points in each direction, for
AR = 0.1, 0.2 and 0.3. The resulting Rec values are added
in Figure 5. For the triangle, the dispersion of the result is
reduced with the fine grid, leading to 33 ≤ Rec ≤ 36
for AR ≤ 1.0. For the lozenge, the fine grid simula-
tions returns offset Rec. However, the new values are still
higher than the curve obtained by regression of data for
AR ≥ 1.0. The critical Reynolds number does not ap-
pear strictly constant for AR ≤ 1.0 but the increase is
very weak between an estimated limit value of ≈ 35 for
AR = 0 and Rec ≈ 40 for AR = 1.0. This is still twice
slower than for the back-pointing triangle, which has the
slowest increase of Rec with AR in group I.

Note that the present data, even with the coarse grid, are
in perfect agreement (same Reynolds number unit) with
the values reported by Yoon et al. [32] for the lozenge at
AR = 1.0 and for the back-pointing triangle at AR = 0.5.
Good agreement (2-3 Re units) is also obtained at AR =
1.0 with Sohankar et al. [29] for lozenge and Ng et al. [38]
for the triangle.

Moreover, the grid refinement has been conducted for
the ellipse at AR = 0.1, 0.2 and 0.3 and 1.0, enabling fur-
ther comparison with previously reported data, as visible
in Figure 6 and discussed in section 3.2. Less than 2 Re
unit difference is noted between the two present grid and
between the present and literature data. The values for the
finer grid also fall better on the regression curve.

It can thus be concluded that the grid refinement study
confirms the results obtained with the coarse grid. More-
over, the uncertainty intervals yielded by the discretiza-
tion error are consistent with those yielded by the thresh-
old of unsteadiness and the dispersion on Rec noted in the

literature, and small with respect to the whole dynamics
of Rec, which lays over 40 Reynolds number units for
0.2 ≤ AR ≤ 2.0.

3.1.3 Existence of a Rec plateau for losn and trib

As confirmed by the grid refinement study, there exists a
plateau of Rec for back-pointing triangles and lozenges
AR ≤ 1.0. The lozenge is an intermediate shape between
the front- and back- pointing triangles, and this appears to
imprint on its onset of unsteadiness through a little increase
of Rec (slopped plateau), while the trif has a stronger in-
crease (no plateau) and the trib a definite plateau. Further
computations involving hybrid shapes lead to the conclu-
sion that the plateau is generated by the lateral edge rather
than by the downstream edge.

The laws for the two geometries (trib and losn) for
AR ≥ 1.0 are coincidental and reproduce the exponential
behavior noted for group I.

3.2 Comparison with previous studies on aspect ratio

A comparison between the present law along with the val-
ues obtained by Jackson [7], Paul et al. [8] and Thompson
et al. [9] is available in Figure 6.

Present results fit well the trend encountered by Jack-
son [7], and Thompson et al. [9], and values given by Paul
et al. [8] for 1 ≤ AR ≤ 2.0. The later reference re-
ported values that are distant from the other sources for
AR < 1.0. It is believed that this offset is due to the dif-
ference in the numerical setup associated with using the
hydraulic diameter as reference for the domain extension.
In the computations by Paul et al. [8] for low AR elliptical
cylinders, the data and regression law may capture the in-
fluence of the increase of the blockage rather than that of
the modification of the geometry.
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Figure 6. Comparison of the evolution of the critical
Reynolds number with the aspect ratio, elliptical section,
with literature values [7–9]. The dashed line represents the
regression law obtained from current data with an imposed
Rec,AR→0.

As for large aspect ratios, a bias due to the transition cri-
teria used in [8] may partly explain why the Rec reported
for AR = 10 is lower than the present exponential law ten-
dency. Present Rec(AR) models would lead to an infinite
critical Reynolds number with the increase of the aspect
ratio (for an infinitely long flat plate parallel to the flow).
The existence of a vortex shedding is uncertain for long
plates, and a different category of flow, fundamentally de-
fined by boundary layer effects, exists. That behavior is
physically plausible, however, more data are necessary to
confirm that and the consistency of the extrapolation of the
proposed model to extended bodies (AR > 2).

4. CONCLUSIONS

4.1 Summary and brief interpretation of results

The Reynolds number for the steady to unsteady flow tran-
sition is estimated for multiple bluff bodies in 2D using a
DNS solver. Via a bisection scheme, the Rec are obtained
with a precision of ± 0.25. Despite the simplicity of the
current framework, values fit well with literature for the
circular, square, and front-pointing triangle at AR = 1.0,
and a database containing 70 geometries is presented. With
the use of several aspect ratios, the following global trend
is noted:

Rec = a exp(bAR) (7)

where a ≈ 31 is common to all geometries, thus estimating
the normal thin plate critical Reynolds number, and b ≈
0.24− 0.45 is specific to each shape.

The elliptical section is the only considered shape that
has no sharp edge, and this geometrical feature is attributed
to the observed behavior of having the highest critical
Reynolds number among the tested cross-sections. The

fact that there are no fixed detachment points leave more
space for adaptation of the flow within a steady solution.
Also, for the ellipses, the boundary layer remains attached
over larger perimeters, thus, are capable of provoking more
diffusion and releasing vorticity to the flow, thus, need to
have a more energetic flow to transition.

4.2 Link with aeroacoustics

A good statistical correlation has been evidenced [12] be-
tween the distance to unsteadiness, quantified by ε (see
Section 2.3.2), and the lift fluctuation normalized by AR
at Re = 150. The present study on Rec may thus shed
light on recent optimization results [19, 20].

4.2.1 Analysis of optimal shapes

Optimal shapes for aeroacoustics has been computed us-
ing the same numerical Navier-Stokes solver as the present
study. Minimization and maximization of acoustic power
has been performed at Re = 150. Two main features are
noticed.

Firstly, the aspect ratio is a main driver of the noise for
AR ≥ 1, since noise minimizations systematically con-
verge to the longest geometry. This is fully consistent with
the exponential relationship exhibited in the present com-
putations.

Secondly, for a fixed AR = 1.5, the rectangular section
is close to be the least noisy shape, while the back pointing
triangle is close to be the most [19]. The least noisy shape
is also close to a rectangle when the aspect ratio is left
free between 1 and 2 [20]. Taking AR = 1.5, one obtains
Rec ∼ 53 from figure 4 for the rectangle and Rec ∼ 51
from figure 5 for the back pointing triangle. These almost
equal values can not explain the almost 15 dB difference of
acoustic power between rect and trib at AR = 1.5 only by
pure difference of level of unsteadiness. Indeed, the for-
malism scaling fluctuation amplitude on ε is theoretically
valid only for small values of ε. The unsteady lift genera-
tion should thus rather credited to the spatial organization
of the shear-layer flapping in the vicinity of the lifting sur-
face: for the back pointing triangle, the vortices are formed
just above the body, while they are pushed downstream it
for the rectangle.

4.2.2 Imprint of Rec on the noise at Re ≈ 20, 000.

Among other cylinders (circular, square, rectangular of
AR = 2), the rectangular cylinder of AR = 3 has been
measured [15] as the noisiest for Re ≈ 20, 000 and a Mach
number of about 0.1. Moreover, the acoustic peak at the
lift frequency was the sharpest. Such an efficient tonal
emission has been linked [15,25] with high levels of span-
wise coherence over almost the whole length of the model
for this shape at this frequency. Thus, at this regime, the
fundamental mode (lift mode) can almost be considered
as still two-dimensional (2D), unlike the flow over shorter
shapes, square and circular in particular. Such delayed tri-
dimensionalization of the long-breadth shape may be fully
consistent with the exponential dependency of the critical
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Reynolds number with the aspect ratio that has been ob-
tained presently. Further theoretical study of the influence
of shape on 2D-3D transition is needed to confirm this con-
jecture.

A. REGRESSION LAWS

The coefficients and statistical quantities for the Re(AR)
models in (5) and (6) are given in Tables 4 and 5. Regres-
sion model Rec = a + bAR2 was found as statistically
significant as the exponential curve that is proposed. For
the elliptical section, for example, the determination coef-
ficient is of 0.99 and the p-value of the normality test is of
0.85. However, the parabolic curve does not capture well
the tendency at low Reynolds number (a close to linear in-
crease of Rec with AR) and is less consistent when taking
account the completeness of the tested shapes. In Table 5,
note how similar are the regression coefficient for AR ≥ 1.
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